The Lind DC Battery Backup Module allows an external 12 VDC battery (not included) to maintain power when the main source voltage drops too low or is lost entirely (as may occur during vehicle starting or battery replacement).

An inexpensive 12 VDC SLA (sealed lead acid) battery becomes electronically connected to the load instantaneously in the event that the main source voltage drops below 11.5 VDC. The length of time that the battery backup can maintain the load will be dependent upon the amp/hour size of the SLA battery.

For assistance call Lind Technical Support at (800) 659-5956 or (952) 927-6303.
CONNECTION INSTRUCTIONS

Remove the input (cigarette lighter cable or other input connection from the Lind DC adapter and connect this cable to the input of the Battery Backup Module. Connect the short output cable provided with the Battery Backup Module between input jack of the Lind DC adapter and the output jack of the Module.

The output cable of the Lind DC adapter will remain connected between the device it is powering and the DC adapter.

The input cable, now connected to the LIVCO Module, will remain connected to the source DC input voltage. The SLA battery connection leads are connected to the SLA battery (+Red Positive) (-Black Negative). This cable is then connected to the center jack of the Lind Battery Backup Module.

Notes:

1. Module is not intended as a backup for a slowly discharging battery. The backup battery will only charge to the level of the primary power source. If the primary source is slowly decaying, as in a discharging battery, the backup battery will also slowly discharge. This would render it unable to provide power when the main source gives out.
2. Module may require additional cables if it is not used with a Lind power adapter that uses detachable cables. Call us for assistance

FEATURES

- Transfer at 11.5 VDC
- Backup Battery Disconnect at 10.4 VDC

TECHNICAL INFORMATION

<table>
<thead>
<tr>
<th>Input Power:</th>
<th>12 — 16 VDC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Battery Input:</td>
<td>11 — 16 VDC</td>
</tr>
<tr>
<td>Battery Cable Fuse:</td>
<td>10A, 250V, 3AG Replace with same fuse and rating</td>
</tr>
</tbody>
</table>
CONNECTION INSTRUCTIONS

Remove the input (cigarette lighter cable or other input connection from the Lind DC adapter and connect this cable to the input of the Battery Backup Module. Connect the short output cable provided with the Battery Backup Module between input jack of the Lind DC adapter and the output jack of the Module. The output cable of the Lind DC adapter will remain connected between the device it is powering and the DC adapter. The input cable, now connected to the LIVCO Module, will remain connected to the source DC input voltage. The SLA battery connection leads are connected to the SLA battery (+Red Positive) (-Black Negative). This cable is then connected to the center jack of the Lind Battery Backup Module.

Notes:

1. Module is not intended as a backup for a slowly discharging battery. The backup battery will only charge to the level of the primary power source. If the primary source is slowly decaying, as in a discharging battery, the backup battery will also slowly discharge. This would render it unable to provide power when the main source gives out.
2. Module may require additional cables if it is not used with a Lind power adapter that uses detachable cables. Call us for assistance

FEATURES

• Transfer at 11.5 VDC
• Backup Battery Disconnect at 10.4 VDC

TECHNICAL INFORMATION

Input Power:	12 — 16 VDC
Battery Input:	11 — 16 VDC
Battery Cable Fuse:	10A, 250V, 3AG

Replace with same fuse and rating
The Lind DC Battery Backup Module allows an external 12 VDC battery (not included) to maintain power when the main source voltage drops too low or is lost entirely (as may occur during vehicle starting or battery replacement). An inexpensive 12 VDC SLA (sealed lead acid) battery becomes electronically connected to the load instantaneously in the event that the main source voltage drops below 11.5 VDC. The length of time that the battery backup can maintain the load will be dependent upon the amp/hour size of the SLA battery.